If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+42x-160=0
a = 1; b = 42; c = -160;
Δ = b2-4ac
Δ = 422-4·1·(-160)
Δ = 2404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2404}=\sqrt{4*601}=\sqrt{4}*\sqrt{601}=2\sqrt{601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{601}}{2*1}=\frac{-42-2\sqrt{601}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{601}}{2*1}=\frac{-42+2\sqrt{601}}{2} $
| 2x+5=5x=1 | | (4x)4=12 | | 36=(x+9) | | -13=7h+1=-32 | | 6f−4=2 | | 3x+2÷7+x-5÷2=9 | | x7=12 | | 5(4a+2)-3(5a-3)=7(2a-7)-5(7a-6)+9a | | 3b+8=56 | | x2+45=0 | | 3*b/7-1=5 | | -3+w=7w-51 | | 5f/3=15 | | 6e+3=4e-5 | | 4(5x-25=80 | | 5c=35# | | t(t-2)(t-3)=0 | | x+15x=64 | | n/6+0.6=2 | | -8x-64=-4x | | n/6+0.6=3 | | (2x-3)(x+2)-(4x-2)(x-5)=-16 | | 3/10-6x=-6x+1/10 | | 399-2b0=30 | | (u-1)^2=2u^2+5u+11 | | 5^3x-4=125^7-2x | | 8x=1=37-4x | | 20-3/2x=-3/2x+20 | | 0,7x+13,3=-0,4x+25,4 | | 12t+30=0 | | 4^x-10×2^x=16 | | 7x^2-7=x^2-2x+1 |